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Contributions to the 5 tochastic 
Theory of Chromatographic Kinetics 

GEORGE H. WEISS" 
IMPERIAL COLLEGE 

LONDON, S.W.7, ENGLAND 

Summary 

The stochastic theory of chromatographic kinetics is extended in two 
directions: (a) To include diffusion effects, and (b) to treat the n-site 
adsorption problem. In  the first case we show that the solution to a 
first passage problem yields the moments of residence time in the mobile 
phase in a rather simple form. For the second problem we show that the 
central limit theorem allows us to deduce rather general results about 
the distribution of residence time. 

1.  INTRODUCTION 

The study of the stochastic theory of chromatographic kinetics was 
initiated by Giddings and Eyring ( l ) ,  and important contributions to 
that theory were subsequently made by Giddings (2-4) and by 
McQuarrie ( 5 ) .  These authors, among other questions discussed, sug- 
gested two problems which have not yet been resolved in a practical 
way. The first of these is the effect of nonzero diffusion in the mobile 
phase, and the second relates to the effects of multisite adsorption on 
the kinetics. McQuarrie and Beynon (6) et al. in their treatment of 
diffusion effects both assume that the time spent by a molecule in the 
mobile phase is a random variable with a Gaussian distribution. Al- 
though this does appear to  be a reasonable approximation, it is pos- 
sible to calculate the residence time distribution in a more funda- 

* Permanent address : Physical Sciences Laboratory, Division of Computer 
Research, National Institutes of Health, Department of Health, Education, and 
Welfare, Bethesda, Maryland 20014. 

51 
Copyright @ 1970 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



52 G. H. WElSS 

mental way by analyzing the first passage time distribution for a 
molecule in a column of finite size. This program will be carried out 
in the present paper. The second problem, that of multisite adsorption, 
can be solved formally for a finite number of types of sites, but the 
solutions do not readily lend themselves to use. Furthermore, the 
problem has only been discussed for a first-order kinetic model of 
interchange between the mobile and stationary phases. Since such 
transitions depend in a complicated way on molecular conformation 
and the geometry of the stationary matrix, it is open to question 
whether such a model is accurate. I n  Sect. 3 we will discuss more 
general models. We will show that when there are a large number of 
mobile phase-stationary phase transitions, limit laws apply which 
depend only on the moments of the residence time in either phase, and 
not on the detailed expressions for the distributions. Hence some of the 
results derived by earlier authors for the kinetics are of more gen- 
erality than they assumed. 

2. DIFFUSION EFFECTS 

Let us consider first the effects of a nonzero diffusion constant D 
on the statistics of residence time in the mobile phase. Let the chro- 
matographic column be of length L with the input ordinate x = L 
and the elution taking place a t  x = 0. We will calculate the effects of 
diffusion in the mobile phase by assuming the absence of a stationary 
phase. Let the amount of material in the layer (2, x + dx) a t  time t 
be c(z,  t )  dz, and let V be the mean drift velocity in the mobile phase. 
Then c(x, t )  satisfies 

subject to an initial condition c(z ,  0) = co6(x - L ) ,  where 6(z) is 
the Dirac delta function. This equation is to be solved subject to 
boundary conditions which say that  there is no flow out of the column 
a t  x = L, and that molecules which reach x = 0 are withdrawn. 
These conditions respectively imply that 

ac 
ax D- -I- VC = 0 x = L 

c(0, t )  = 0 

What is required is not c (z ,  t )  itself, but rather the probability that 
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STOCHASTIC THEORY OF CHROMATOGRAPHIC KINETICS 53 

a molecule introduced a t  t = 0 remains in the column for a time t or 
longer. This probability is just 

G(t) = - ~ ( 5 ,  t )  dx 
co I” 0 

(2.3) 

If g ( t )  dt is the probability that a given residence time is between 
t and t + dt then g ( t )  d t  = G ( t )  - G ( t  + d t )  or 

(2.4) 

A solution to Q. (2.1) is most easily obtained by introducing a new 
dependent variable p (2, t )  by 

vx 
-- c ( ~ ,  ‘I - p(x:  t )  exp (- 

- E) co 40 

which transforms Eq. (2.1) to 

at 

with boundary conditions 

D - + - p = o ,  a P  v x = L  
ax 2 

(2.5) 

(2.7) 

P ( 0 ,  t> = 0 

This set of equations is equivalent to a heat conduction problem, and 
the solution can be taken immediately from standard references (7) .  
The solution for c (x, t )  can be expressed as 

* 

CH = exp [g ( L  - x)] C sin wnL N ,  sin wnx exp [ - (g + ~ w z )  t ]  
co 

n = l  

(2.8) 
where the W ,  are the roots of 

2 0  
w,L V L  

-- - - _  tan w,L 

and the N ,  are normalizing factors given by 

sin 2w,L N , = -  I-.---- ”( 2 2wnL (2.10) 
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54 G. H. WElSS 

A short table of roots of Eq. (2.9) is given in Reference 7. The 
probability density for residence time, g ( t )  , can be obtained from 
Eqs. (2.4) and (2.8), and is 

Although the complete probability density g ( t )  requires numerical 
evaluation, it is possible to obtain expressions for the moments of 
residence time rather easily by recognizing that the problem we have 
just solved is a first passage time problem ( 8 ) .  In particular for the 
problem posed in Eqs. (2.1) and (2.2), one can show that the moments, 
pn (x) , defined by 

/ L a @ )  = k m  t ”g( t )  d t  (2.12) 

satisfy a simple ordinary differential equation. I n  the above equation 
the variable J: (not necessarily = L )  is assumed to be the point of 
injection a t  t = 0. We are interested in p n ( L )  for present purposes 
but require the general pn(z) to calculate higher moments. The h ( x )  
can be shown (8) to  satisfy the equations 

(2.13) 

where ,b = 1 by definition. These equations are to be solved subject 
to the boundary conditions 

= o  (2.14) 

The first moment p l ( L )  and t’he variance u 2 ( L )  = ,pz (L)  - p:(L) are 
found to be 

2= L 
P n ( 0 )  = 0, 1 

Thus, in the present model diffusion always serves to decrease the 
average residence time, although the effect will usually be small, as 
measured by the dimensionless parameter D/ ( V L )  . In  this approxi- 
mation the variance of residence time can be approximated by 
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STOCHASTIC THEORY OF CHROMATOGRAPHIC KINETICS 55 

u2(L) - 2DL/V3 (2.16) 
so that  d ( L )  is proportional to L as in the theory of Beynon (6)  
et al. Higher moments can be generated by the relations 

(2.17) 

where pn(x) is 

It has been shown that for L sufficiently large, the first passage density 
tends to a Gaussian form (9) and this is a convenient approximation 
for the present analysis, although the use of Eq. (2.11) enables one 
to calculate the density more exactly. The width of the peak is meas- 
ured by u(L)/pI ( L )  which is approximately 

(2.19) 

in the limit of small D / ( V L )  

3. MULTISITE T H E O R Y  

Considerable effort has been devoted to obtaining exact solutions 
for multisite adsorption models, but the resulting solutions have often 
proved difficult to evaluate except numerically. Giddings and Eyring 
(1 )  and Giddings (2 )  discussed the two site model when both adsorp- 
tion and resorption occur according to first-order kinetics. McQuarrie 
(5)  has analyzed the n site problem, obtaining an exact solution in 
terms of a contour integral. He was able to extract an asymptotic 
expansion (for t -+ 00 ) for the two site case. It does not seem to have 
been noticed before that  fairly simple results can be obtained subject 
to the assumption that the number of adsorptions is large during the 
course of a column traversal. If this assumption is permitted, one can 
also consider more general residence time distributions than arise from 
the commonly analyzed case represented by 
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56 G. H. WEISS 

where A represents the mobile phase and B, represents adsorption by 
a site of type r.  Since adsorption is a complex phenomenon resulting 
from the interaction between a complicated geometric structure and 
an equally complicated molecular conformation, i t  would be surprising 
if a description by first-order kinetics is correct. As we will show 
later, the probability density for traversal time is insensitive to de- 
tailed features of the residence time distributions provided that the 
number of adsorption events is large. We will derive limiting results 
on this assumption, but our methods do not suffice to obtain informa- 
tion about cases in which trapping is infrequent, a case of potential 
interest in the discussion of tailing. 

The idea behind the following calculation is to  assume that all sites 
have statistically identical parameters, rather than being identical in 
every respect. Thus, we define a generalized first-order reaction which 
can be depicted in the usual way as 

k 

k’ 
A + B  (3.2) 

but now we assume that the rate constants are random variables rather 
than being fixed. This model, as will shortly be shown, contains as 
a special case the situation shown in Eq. (3.1), but allows the study 
of a much wider class of problems. To see what Eq. (3.2) implies, let 
us suppose that  a particle enters the stationary phase at some time. 
Then the probability that  it remains in the stationary phase for a 
time between t and t + dt is k‘ exp (-k’t) d t .  Let h,(k’) dk‘ be the 
probability that  the reaction rate a t  a given site is between k‘ and 
k’ + dk’. Then the probability that a molecule remains trapped a t  an 
arbitrary site for a time between t and t + dt is p ,  ( t )  dt ,  where 

p 8 ( t )  = A m  kh , (k )eck t  dk (3.3) 

As a special case, if there are n types of sites, the proportion of type 
r being f,., then 

leads to  results equivalent t o  those generated by the kinetic scheme 
of Eq. (3.1). If n = 1 we are led back to  the single-site situation. 
Similar remarks apply to the forward reaction rate k ,  and a function 
h , ( k )  dk will denote the probability that a trapping rate a t  a specific 
site is between k and k + dk .  
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STOCHASTIC THEORY OF CHROMATOGRAPHIC KINETICS 57 

The total time to traverse the column will be denoted by T and 
can be written 

T = 7 + 11 + tz + . . . + tn(r )  (3.5) 

where T is the time in the mobile phase, t ,  is the time spent in the 
stationary phase on the j'th occasion, and n ( T )  is the number of ad- 
sorptions during a time T .  It is possible to derive expressions for 
the moments of T starting from this general expression. Furthermore, 
one can show that under certain circumstances the limiting distribu- 
tion of T is Gaussian, so that only the first two moments of T are re- 
quired in those instances. In  order to calculate the moments of T we 
need to either find or define moments of the auxiliary random variables 
T, ti, and % ( T ) .  We first note that the moments of T are just the p L r ( L )  ! 

whose calculation was discussed in Sect. 2. The r'th moment of sojourn 
time will be denoted by and is defined by 

where the second integral representation is a consequence of Eq. (3.3). 
In  the Giddings-Eyring model where a single rate constant k' char- 
acterizes sojourn time 

(3.7) 

In  the present more general model we need not be this specific and 
can allow any proper sequence of moments. Another sequence of 
moments needed is that corresponding to the number of trapping 
events in time T. If we let the probability that there are n trapping 
events in time 7 be on ( T )  , and denote the r'th moment of the number 
of trapping events by ;(T) ! then by definition 

m 

n =1 

In  the Giddings-Eyring first-order kinetics model the function W, ( T )  

is 

so that the first two moments are 
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G. H. WEISS 58 

(3.10) 

Since T is itself random, we shall also need the moments averaged 
over 7. These will be denoted by v T  and are defined by 

(3.11) 
m -  

v ,  = Jo nr(r)g(r) dr 

In  the Giddings-Eyring model T = L/V exactly so that 

kL 
u: = v 2  - v: = v 1  (3.12) 

Again, the present calculations allow for more general forms for Z ( T )  
and therefore for vl. 

We are now in a position to evaluate the moments of T .  For 
simplicity, this will be done in two steps. In  the first T will be held 
fixed, and we will calculate value of the r'th moment of T which con- 
tain r. These will be denoted by P ( T ) .  I n  the final step we will aver- 
age over T to  obtain the moments p. These moments are obviously 
related to  T'(T) by 

F = im T'(7)g(r) dr 

v 1  = 7' 

(3.13) 

For the first moment we find that  

1"(T)  = 7 + n ( T ) t  (3.14) 

since the expected value of t ,  + t z  + . . . + t l l ( T )  is n ( ~ )  multiplied 
by the expected value or any t ,  of n ( T )  t. The averaged value is 
now found to  be 

T = p 1 ( L )  + V l f  (3.15) 

For the Giddings-Eyring model, p L I ( L )  = L/V ,  arid 

(3.16) 

Calculation of the second moment, or variance, is slightly more 
difficult. By squaring Eg. (3 .5)  and performing the averaging process 
with fixed T ,  we find that 

- 
T2(r )  = r2 + 2 r ~ ~ ( r ) i  + IL(T)? + ~ ( r ) [ n ( r )  - 1]F (3.17) 

The last two terms in this expression nre the average of ( t l  + t ,  + 
. . . + t n ( , ) ) ? ;  the first of these terms representing the average of 
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STOCHASTIC THEORY OF CHROMATOGRAPHIC KINETICS 59 

terms of the form t j ,  and the last representing the average of terms 
with different indices t i t j .  If we now perform the average over T we 
find that  

(3.18) 
- 

in which we see that a new type of average, Tn ( T )  , is required. This 
difficulty does not arise in the analysis of the Giddings-Eyring model, 
since in that case 

(3.19) 

and the T can be separated from the product. In  the present case 
the separation cannot be made since T and n ( ~ )  are obviously cor- 
related. The longer the traversal time T ,  the larger n ( ~ )  tends to be. In  
order to calculate the required average we will need some results from 
renewal theory that  will enable us to calculate a good approximation, 
rather than an exact expression, for TTL ( 7 ) .  

Using the definition of W - ( T )  introduced above, we can write for 
the desired average 

- 

(3.20) 
1L 

This expression is still an exact one. We will now make use of two 
approximations which are valid in almost all situations of interest. 
The first is that the effects of diffusion arc small so that  the peak 
broadening measured in time units is small in comparison with the 
traversal time. Specifically we require that u(L)/pl(L) < 1 or, from 
Eq. (2.15), that  

2 0  2DTc<1 
V L - 7 7 -  (3.21) 

where T is approximately equal to the traversal time. The second 
approximation is that  the expected number of sorptions in the course 
of traversing the column is large, i.e., v1 >> 1. When these approxima- 
tions hold, < ( T )  will also be large, and we can use the asymptotic form 
for % ( T )  to  get an approximate expression for the integral in Eq. 
(3.20). It can be shown by the use of techniques from renewal theory 
(10) that 

(3.22) 
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60 G. H. WEISS 

where E ( T )  is negligible in comparison to  thc first term for values of 
T during which g ( T )  allows substantial contributions. Hence the term 
T T Z ( S )  can be approximated by 
__ 

(3.23) 

This result is exact for the Gidding-Eyring __ model. It is possible to 
derive an exact expression for T T L ( T )  in terms of the parameters ap- 
pearing in the exact solution in Eq. (2 .8))  but the result given in Eq. 
(3.23) will lead to negligible error for parameters of chemical interest. 

With the result just given we can finally write down the expression 
for F as 

It is of interest also to give an expression for the variance U: = 
T 2  - F  by combining Eqs. (3.15) and (3.24). In  this way we find 
that 

- 

(3.25) 

where a 2 ( L )  is the variance given in Eq. (2.15)) and u,2 and a: are 
just 

We see from Eq. (3.25) that there are three types of contributions to 
the variance of traversal time. The first is & the variance due to 
fluctuations in the numbcr of adsorptions, the second is u2.) the vari- 
ance due to fluctuations in adsorption times for single events, and the 
third is u 2 ( L ) ,  the variance due to diffusion effects. In  the n-site 
analogue of the Giddings-Eyring model the probability densities for 
rate constants are 

11 

h,(k) 2 f,S(k - k7)  
T = l  

(3.27) 
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where k ,  and k:  are the forward and backward rate constants to a 
site of type r ,  and fl- is the fraction of r sites. When diffusion effects 
are absent (in any case they will be small), the averages that are 
required for the evaluation of T and u$ are 

- 
t j  = j!ZfJ(k:)j 
v1 = 5L/V,  

(3.28) 
u; = LL/V 

where is defined to be 
7, 

5 = z\ f jkj  
j = 1  

For this model we can write T and 0; explicitly as 

(3.29) 

(3.30) 

(3.31) 

It is clear that  higher moments of the traversal time can be obtained 
by the same methods that we have used, albeit with considerably 
more algebra. 

Although we have been able to calculate the moments of the transit 
time distribution, it appears to be much more difficult to calculate 
the distribution itself. We can, however, obtain an approximate dis- 
tribution if T is assumed to have a Gaussian distribution. Let the 
traversal time T be decomposed as 

T = r + T i  (3.32) 

where 

TI = t i  + tz + . . . + t n ( r )  (3.33) 

As pointed out above, the Gaussian distribution of T I  follows from 
the central limit theorem. Thus T can be written as the sum of two 
dependent Gaussian random variables, hence T itself has a Gaussian 
distribution. Our calculations show that the mean and variance of 
T are given in Eqs. (3.15) and (3.25). 
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