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Contributions to the Stochastic
Theory of Chromatographic Kinetics

GEORGE H. WEISS*

IMPERIAL COLLEGE
LONDON, $.W.7, ENGLAND

Summary

The stochastic theory of chromatographic kinetics is extended in two
directions: (a) To include diffusion effects, and (b) to treat the n-site
adsorption problem. In the first case we show that the solution to a
first passage problem yields the moments of residence time in the mobile
phase in a rather simple form. For the second problem we show that the
central limit theorem allows us to deduce rather general results about
the distribution of residence time.

1. INTRODUCTION

The study of the stochastic theory of chromatographie kineties was
initiated by Giddings and Eyring (1), and important contributions to
that theory were subsequently made by Giddings (2-4) and by
McQuarrie (§). These authors, among other questions discussed, sug-
gested two problems which have not yet been resolved in a practical
way. The first of these is the effect of nonzero diffusion in the mobile
phase, and the second relates to the effects of multisite adsorption on
the kinetics. McQuarrie and Beynon (6) et al. in their treatment of
diffusion effects both assume that the time spent by a molecule in the
mobile phase is a random variable with a Gaussian distribution. Al-
though this does appear to be a reasonable approximation, it is pos-
sible to calculate the residence time distribution in a more funda-
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mental way by analyzing the first passage time distribution for a
molecule in a column of finite size. This program will be carried out
in the present paper. The second problem, that of multisite adsorption,
can be solved formally for a finite number of types of sites, but the
solutions do not readily lend themselves to use. Furthermore, the
problem has only been discussed for a first-order kinetic model of
interchange between the mobile and stationary phases. Since such
transitions depend in a complicated way on molecular conformation
and the geometry of the stationary matrix, it is open to question
whether such a model is accurate. In Sect. 3 we will discuss more
general models. We will show that when there are a large number of
mobile phase-stationary phase transitions, limit laws apply which
depend only on the moments of the residence time in either phase, and
not on the detailed expressions for the distributions. Hence some of the
results derived by earlier authors for the kinetics are of more gen-
erality than they assumed.

2. DIFFUSION EFFECTS

Let us consider first the effects of a nonzero diffusion constant D
on the statistics of residence time in the mobile phase. Let the chro-
matographic column be of length L with the input ordinate z = L
and the elution taking place at x = 0. We will calculate the effects of
diffusion in the mobile phase by assuming the absence of a stationary
phase. Let the amount of material in the layer (z, x 4 dz) at time ¢
be c(z, t) dz, and let V be the mean drift velocity in the mobile phase.
Then c(z, t) satisfies

oc d% oc

T D e +V % 2.1)
subject to an initial condition c¢(x, 0) = ¢,8(x — L), where 8(z) is
the Dirac delta function. This equation is to be solved subject to
boundary conditions which say that there is no flow out of the column
at = L, and that molecules which reach z = 0 are withdrawn.
These conditions respectively imply that

D;—C+Vc=0 z =1L
T (2.2)
¢0,1) =0

What is required is not c(z, t) itself, but rather the probability that
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a molecule introduced at ¢t = 0 remains in the column for a time ¢ or
longer. This probability is just

1 [
G@) = c_(,/; c(z, 1) dx (2.3)

If g(t) dt is the probability that a given residence time is between
t and t 4 dt then g(t) dt = G(t) — G(t + dt) or

L
g(t) = — clogz [) o(z, 1) dz 2.4)

A solution to Eq. (2.1) is most easily obtained by introducing a new
dependent, variable p(z, t) by

ez, ) _ V=V
o~ P@ exP( D 4D> (2.5)
which transforms Eq. (2.1) to
9 _ p %
i D e (2.6)
with boundary conditions
op  V
D5i+§p=0, x =1L 2.7
p(0,8) =0

This set of equations is equivalent to a heat conduetion problem, and
the solution can be taken immediately from standard references (7).
The solution for c(x, t) can be expressed as

ez, t) _ v o sin w,L sin waz N < \& 2) ]
e = exp [2D (L x)] E S A exp [ ib + Dl }t
1

" 2.8)

where the o, are the roots of

tan w,L _ Q_D
w L VL

2.9

and the N, are normalizing factors given by

v, =L (1 - 2“’"L) (2.10)

2wl
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A short table of roots of Eq. (2.9) is given in Reference 7. The
probability density for residence time, g{t), can be obtained from
Eqgs. (2.4) and (2.8), and is

©

VL » Sin w, L V2
g(t) = D exp (“@) 2 w—s}%w—— exp [~ (E + wnzD) t] (2.11)
1

n=

Although the complete probability density ¢(t) requires numerical
evaluation, 1t is possible to obtain expressions for the moments of
residence time rather easily by recognizing that the problem we have
just solved is a first passage time problem (8). In particular for the
problem posed in Egs. (2.1) and (2.2), one can show that the moments,
wn(z), defined by

un) = [[7 t7g(0) dt 2.12)

satisfy a simple ordinary differential equation. In the above equation
the variable z (not necessarily = L) is assumed to be the point of
injection at t = 0. We are interested in p,(L) for present purposes
but require the general u,(z) to calculate higher moments. The w,(z)
can be shown (8) to satisfy the equations

2
D _ Vd—’;" = —Ngpoy, n>1 (2.13)

D dz? d. -

where o = 1 by definition. These equations are to be solved subject
to the boundary conditions

A

ua(0) = 0, dx

=0 (2.14)

z=L

The first moment u,(L) and the variance o*(L) = u, (L) — u2(L} are
found to be

w(l) = & [1 - - e—VL/D)] -

2
o) = % [%é —5+4 (1 + KDé) e VLID 4 e~2VL/D]

Thus, in the present model diffusion always serves to decrease the
average residence time, although the effect will usually be small, as
measured by the dimensionless parameter D/(VL). In this approxi-
mation the variance of residence time can be approximated by
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e¥L) ~ 2DL/V* (2.16)

so that o¢*(L) is proportional to L as in the theory of Beynon (8)
et al. Higher moments can be generated by the relations

L
(L) = f—, /0 pao1(x)(1 — e V=I0) dg (2.17)

where p,(z) is

eVzID
D
Roi(z) = n [} ® () du,  S,_i(z) = [) " Ro_i(w)e=Yui dy  (2.18)

@) = 580 + Bevimr iy @ - 1) = 27 5@

It has been shown that for L sufficiently large, the first passage density
tends to a Gaussian form (9) and this is a convenient approximation
for the present analysis, although the use of Eq. (2.11) enables one
to calculate the density more exactly. The width of the peak is meas-
ured by o(L)/p, (L) which is approximately
o(L) _ |2D

pi(L) VL
in the limit of small D/(VL).

(2.19)

3. MULTISITE THEORY

Considerable effort has been devoted to obtaining exact solutions
for multisite adsorption models, but the resulting solutions have often
proved difficult to evaluate except numerically. Giddings and Eyring
(1) and Giddings (2) discussed the two site model when both adsorp-
tion and resorption occur according to first-order kinetics. McQuarrie
(6) has analyzed the n site problem, obtaining an exact solution in
terms of a contour integral. He was able to extract an asymptotic
expansion (for t—> oo) for the two site case. It does not seem to have
been noticed before that fairly simple results can be obtained subject
to the assumption that the number of adsorptions is large during the
course of a column traversal. If this assumption is permitted, one can
also consider more general residence time distributions than arise from
the commonly analyzed case represented by

B,
A2 B, 3.1)
‘p
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where A represents the mobile phase and B, represents adsorption by
a site of type r. Since adsorption is a complex phenomenon resulting
from the interaction between a complicated geometric structure and
an equally complicated molecular conformation, it would be surprising
if a description by first-order kineties is correct. As we will show
later, the probability density for traversal time is insensitive to de-
tailed features of the residence time distributions provided that the
number of adsorption events is large. We will derive limiting results
on this assumption, but our methods do not suffice to obtain informa-
tion about cases in which trapping is infrequent, a case of potential
interest in the discussion of tailing.

The idea behind the following calculation is to assume that all sites
have statistically identical parameters, rather than being identical in
every respect. Thus, we define a generalized first-order reaction which
can be depicted in the usual way as

k
AeB (3.2)

but now we assume that the rate constants are random variables rather
than being fixed. This model, as will shortly be shown, contains as
a special case the situation shown in Eq. (3.1), but allows the study
of a much wider class of problems. To see what Eq. (3.2) implies, let
us suppose that a particle enters the stationary phase at some time.
Then the probability that it remains in the stationary phase for a
time between t and t 4 dt is k’ exp (—k’t) dt. Let h (k’) dk’ be the
probability that the reaction rate at a given site is between k’ and
k! + dk’. Then the probability that a molecule remains trapped at an
arbitrary site for a time between ¢ and ¢ - dt is p, (t) dt, where

po(t) = [ khu(kye i 3.3)

As a special case, if there are n types of sites, the proportion of type
r being f,, then

ho(k) = Y £,k — k) (3.4)

leads to results equivalent to those generated by the kinetic scheme
of Eq. (3.1). If n =1 we are led back to the single-site situation.
Similar remarks apply to the forward reaction rate k, and a function
hm(k) dk will denote the probability that a trapping rate at a specific
site is between k and k + dk.
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The total time to traverse the column will be denoted by T and
can be written

T=r+b+tb+- -+ tun (3.5)

where = is the time in the mobile phase, t; is the time spent in the
stationary phase on the j'th occasion, and n(r) is the number of ad-
sorptions during a time r. It is possible to derive expressions for
the moments of 7' starting from this general expression. Furthermore,
one can show that under certain circumstances the limiting distribu-
tion of T is Gaussian, so that only the first two moments of T are re-
quired in those instances. In order to caleulate the moments of T we
need to either find or define moments of the auxiliary random variables
, t;, and n(r). We first note that the moments of = are just the w, (L),
whose calculation was discussed in Sect. 2. The #th moment of sojourn
time will be denoted by ¢" and is defined by

F:/ tpu(t) dt = TI/ holk) (3.6)
0 o k

where the second integral representation is a consequence of Eq. (3.3).
In the Giddings-Eyring model where a single rate constant &’ char-
acterizes sojourn time

- r!

t L (3.7)
In the present more general model we need not be this specific and
can allow any proper sequence of moments. Another sequence of
moments needed is that corresponding to the number of trapping
events in time 7. If we let the probability that there are n trapping
events in time r be w,(7), and denote the 7th moment of the number
of trapping events by n”(r), then by definition

©

nir) = 2 NTw,(r) (3.8)

n=1

In the Giddings-Eyring first-order kinetics model the function w,(r)
is

walr) = Q;_S_" ekt (3.9)

so that the first two moments are
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Alr) = kr, ni(r) = kr + (k7)?
o) = W6 — O = ke

Since + is itself random, we shall also need the moments averaged
over 7. These will be denoted by v, and are defined by

(3.10)

v, = ﬁ’m n'(r)g(r) dr (3.11)
In the Giddings-Eyring model - = L/V exactly so that
kL
=g ol =ve— ¥ = (3.12)

Again, the present calculations allow for more general forms for n'(7)
and therefore for v,.

We are now in a position to evaluate the moments of T. For
simplicity, this will be done in two steps. In the first = will be held
fixed, and we will calculate value of the ’th moment of T which con-
tain =. These will be denoted by T7 (). In the final step we will aver-
age over r to obtain the moments T". These moments are obviously
related to T7(r) by

T = [" T@ee) dr (3.13)

For the first moment we find that
T) =1+ n)i (3.14)
since the expected value of ¢, 4+t 4 . . . 4 tu(,) is n(7) multiplied

by the expected value or any t; of n(r)t. The averaged value T is
now found to be

T = wi(L) + it (3.15)
For the Giddings-Eyring model, g, (L} = L/V, and
m . é _A’_
Fos= £ (1+1) (3.16)

Calculation of the second moment, or variance, is slightly more
difficult. By squaring Eq. (3.5) and performing the averaging process
with fixed 7, we find that

T r) = 72 4+ 2ru(r)l + n(r)e2 + n(@)[n(r) — 1] (3.17)

The last two terms in this expression are the average of (¢ +&: -+
...~ ta)?; the first of these terms representing the average of



14: 39 25 January 2011

Downl oaded At:

STOCHASTIC THEORY OF CHROMATOGRAPHIC KINETICS 59

terms of the form t2, and the last representing the average of terms
with different indices ¢;t;. If we now perform the average over r we
find that

T? = po(L) + vt + (o — »1)I® + 26rn(r) (3.18)

in which we see that a new type of average, mn(r), is required. This
difficulty does not arise in the analysis of the Giddings-Eyring model,
since in that case

(r) = rnlr) (3.19)

and the = can be separated from the product. In the present case
the separation cannot be made since r and n(r) are obviously cor-
related. The longer the traversal time =, the larger n () tends to be. In
order to calculate the required average we will need some results from
renewal theory that will enable us to calculate a good approximation,
rather than an exact expression, for mn (7).

Using the definition of w,(r) introduced above, we can write for
the desired average

() = /Ow 7g(r) Z N, (1) dr = 'Lw (r)rg(r) dr (3.20)

"

This expression is still an exact one. We will now make use of two
approximations which are valid in almost all situations of interest.
The first is that the effects of diffusion are small so that the peak
broadening measured in time units is small in comparison with the
traversal time. Specifically we require that o(L)/u: (L) €1 or, from
Eq. (2.15), that

2D  2DT

VL™~ IE <1 (3.21)

where T is approximately equal to the traversal time. The second
approximation is that the expected number of sorptions in the course
of traversing the column is large, i.e., v, > 1. When these approxima-
tions hold, n(r) will also be large, and we can use the asymptotic form
for n(r) to get an approximate expression for the integral in Eq.
(3.20). Tt can be shown by the use of techniques from renewal theory
(10) that

nir) ~ D) + elr) (3.22)
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where ¢(r) is negligible in comparison to the first term for values of
r during whiech ¢(+) allows substantial contributions. Henee the term
+n(r) can be approximated by

na(L)
ui(L)

This result is exact for the Gidding-Eyring model. It is possible to
derive an exact expression for wn(s) in terms of the parameters ap-
pearing in the exact solution in Eq. (2.8), but the result given in Eq.
(3.23) will lead to negligible error for parameters of chemical interest.

With the result just given we can finally write down the expression
for T? as

(3.23)

Tn(‘l') ~ V1

p2(L)
pr(L)

It is of interest also to give an expression for the variance o% =
T2 — T2 by combining Eqs. (3.15) and (3.24). In this way we find
that

T? = po(L) + nt? + (v — v + 21

(3.24)

b = o2 4 pyot - (1 4 2l ) (L) (3.25)
pi(L)
where o?(L) is the variance given in Eq. (2.15), and ¢ and ¢} are
just

o = vy — 13, o = {2 — 2 (3.26)

We see from Eq. (3.25) that there are three types of contributions to
the variance of traversal time. The first is o2, the variance due to
fluetuations in the number of adsorptions, the second is o2, the vari-
ance due to fluctuations in adsorption times for single events, and the
third is ¢*(L), the variance due to diffusion effects. In the n-site
analogue of the Giddings-Eyring model the probability densities for
rate constants are

hn(k) = Y f280k — k)
= (3.27)
hok) = ) £k = k)
r=1
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where k, and k. are the forward and backward rate constants to a
site of type r, and f, is the fraction of r sites. When diffusion effects
are absent (in any case they will be small), the averages that are
required for the evaluation of T and of are

v = jI=f./ (k)
v = kL/V, o = kL/V
where £ is defined to be

(3.28)

. ]Zl ik (3.29)

For this model we can write T and o% explicitly as

. L _ g
T=I7<1+kz£~£> (3.30)

ok = 2L N/,
|4 (k7)?

(3.31)

It is clear that higher moments of the traversal time can be obtained
by the same methods that we have used, albeit with considerably
more algebra.

Although we have been able to calculate the moments of the transit
time distribution, it appears to be much more difficult to calculate
the distribution itself. We can, however, obtain an approximate dis-
tribution if r is assumed to have a Gaussian distribution. Let the
traversal time 7' be decomposed as

T=r+T (3.32)

where

Tl = il + t2 + st + tn(‘r) (333)

As pointed out above, the Gaussian distribution of T, follows from
the central limit theorem. Thus T can be written as the sum of two
dependent Gaussian random variables, hence T itself has a Gaussian
distribution. Our caleulations show that the mean and variance of
T are given in Eqs. (3.15) and (3.25).
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